Exercise 7.7.2

Find the general solutions to the following inhomogeneous ODEs:

$$
y^{\prime \prime}+y=1
$$

Solution

This is a linear ODE, so its general solution can be written as a sum of the complementary solution and the particular solution.

$$
y(x)=y_{c}(x)+y_{p}(x)
$$

The complementary solution satisfies the associated homogeneous equation.

$$
y_{c}^{\prime \prime}+y_{c}=0
$$

Because it's homogeneous and the coefficients on the left side are constant, the solution for y_{c} is of the form $e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
\begin{aligned}
& r^{2}+1=0 \\
& r=\{-i, i\}
\end{aligned}
$$

Two solutions to the ODE are $y_{c}=e^{-i x}$ and $y_{c}=e^{i x}$. By the principle of superposition, the general solution is a linear combination of these two.

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{-i x}+C_{2} e^{i x} \\
& =C_{1}[\cos (-x)+i \sin (-x)]+C_{2}[\cos (x)+i \sin (x)] \\
& =C_{1}(\cos x-i \sin x)+C_{2}(\cos x+i \sin x) \\
& =\left(C_{1}+C_{2}\right) \cos x+\left(-i C_{1}+i C_{2}\right) \sin x \\
& =C_{3} \cos x+C_{4} \sin x
\end{aligned}
$$

On the other hand, the particular solution satisfies

$$
\begin{equation*}
y_{p}^{\prime \prime}+y_{p}=1 \tag{1}
\end{equation*}
$$

Because the inhomogeneous term is a constant, y_{p} is expected to be a constant as well: $y_{p}(x)=A$. Substitute this formula into equation (1) to determine A.

$$
(A)^{\prime \prime}+(A)=1 \quad \rightarrow \quad A=1
$$

Therefore, the particular solution is $y_{p}(x)=1$, and the general solution to the original ODE is

$$
\begin{aligned}
y(x) & =y_{c}(x)+y_{p}(x) \\
& =C_{3} \cos x+C_{4} \sin x+1
\end{aligned}
$$

